MH180 LEEB HARDNESS TESTER

1. Overview

1.1 Advantages

- Wide measuring range. Based on the principle of Leeb hardness testing theory. It can measure the Leeb hardness of all metallic materials.
- Large screen LCD, showing all functions and parameters. With EL background light.
- Seven impact devices are available for special application. Automatically identify the type of impact devices.
- Test at any angle, even upside down.
- Direct display of hardness scales HRB, HRC, HV, HB, HS, HL
- Large memory could store 100 groups (Relative to average times 32~1) information including single measured value, mean value, impact direction, impact times, material and hardness scale etc.
- Battery information showing the rest capacity of the battery.
- User calibration function.
- Software to connect to PC via RS232 port. Micro printer support.
- Compact plastic case, suitable for use under poor working conditions
- Continuous working period of no less than 100 hours with two alkaline batteries(AA size); Auto power off to save energy.
- Outline dimensions: 150×74×32 mm
- Weight: 245g

1.2 Main Application & Testing Range

1.2.1 Main Application

- Die cavity of molds
- Bearings and other parts
- Failure analysis of pressure vessel, steam generator and other equipment
- Heavy work piece
- The installed machinery and permanently assembled parts.
- Testing surface of a small hollow space
- Material identification in the warehouse of metallic materials
- Rapid testing in large range and multi-measuring areas for large-scale work piece

1.2.2 Testing Range

Testing range refer to Table 1 and Table 2 in the Appendix.

1.3 Technical Specifications

- Error and repeatability of displayed value see Table1-1 below.
 - Table 1-1

No.	Type of impact device	Hardness value of Leeb standard hardness block	Error of displayed value	Repeatability
1	D	$760{\pm}30$ HLD $530{\pm}40$ HLD	\pm 6 HLD \pm 10 HLD	6 HLD 10 HLD
2	DC	760 ± 30 HLDC 530 ± 40 HLDC	\pm 6 HLDC \pm 10 HLDC	6 HLD 10 HLD
3	DL	878 ± 30 HLDL 736 ±40 HLDL	\pm 12 HLDL	12 HLDL
4	D+15	766 \pm 30HLD+15 544 \pm 40HLD+15	\pm 12 HLD+15	12 HLD+15
5	G	590 ± 40 HLG 500 ± 40 HLG	\pm 12 HLG	12 HLG
6	E	$725{\pm}30$ HLE $508{\pm}40$ HLE	\pm 12 HLE	12 HLE
7	С	822±30HLC 590±40HLC	\pm 12 HLC	12 HLC

- Measuring range: HLD (170~960) HLD
- Measuring direction: 0~360°
- Hardness Scale: HL、HB、HRB、HRC、HRA、HV、HS
- Display: segment LCD
- Data memory: max. 100 groups (relative to impact times 32~1)
- Working power: 3V (2 AA size alkaline batteries)
- Continuous working period: about 100 hours (With backlight off)
- Communication interface: RS232

1.4 Configuration

Table 1-2

	No.	ltem	Quantity	Remarks
Standard	1	Main unit	1	
Configuration	2	D type impact device	1	With cable
	3	Standard test block	1	
	4	Cleaning brush (I)	1	
	5	Small support ring	1	
	6	Alkaline battery	2	AA size
	7	Manual	1	
	8	Instrument package	1	
		case		

	9			
Optional Configuration	11	Cleaning brush (II)	1	For use with G type impact device
	12	Other type of impact devices and support rings		Refer to Table 3 and Table 4 in the appendix.
	13	DataPro software	1	
	14	Communication cable	1	
	15	Micro Printer	1	
	16	Print cable	1	

1.5 Working Conditions

Working temperature: $0^{\circ}C \sim +40^{\circ}C$; Storage temperature: $-30^{\circ}C \sim +60^{\circ}C$

Relative humidity: $\leq 90\%$;

The surrounding environment should avoid of vibration, strong magnetic field, corrosive medium and heavy dust.

2 Structure Feature & Testing Principle

2.1 Structure Feature

Main unit 2.Keypad 3. LCD display 4 Socket of RS232
Socket of impact device 6. Impact device 7 Label 8. Battery cover

2.1.1 D Type Impact Device

1 Release button2 Loading tube3 Guide tube4 Coil unit5 Connection cable6 Impact body7 Support ring

2.1.2 Different Types of Impact Device

